144. Binary Tree Preorder Traversal¶
Description¶
Given the root
of a binary tree, return the preorder traversal of its nodes' values.
Example 1:
Input: root = [1,null,2,3]
Output: [1,2,3]
Example 2:
Input: root = [1,2,3,4,5,null,8,null,null,6,7,9]
Output: [1,2,4,5,6,7,3,8,9]
Example 3:
Input: root = []
Output: []
Example 4:
Input: root = [1]
Output: [1]
Constraints:
- The number of nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
.
Solutions¶
I Recursion¶
Complexity:
- Time complexity: \(O(n)\), where \(n\) is the number of nodes in the tree.
- Space complexity: \(O(h)\), where \(h\) is the height of the tree.
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func preorderTraversalRecursion(root *TreeNode, values *[]int) {
if root == nil {
return
}
*values = append(*values, root.Val)
preorderTraversalRecursion(root.Left, values)
preorderTraversalRecursion(root.Right, values)
}
// Preorder traversal: root -> left -> right
func preorderTraversal(root *TreeNode) []int {
values := make([]int, 0)
preorderTraversalRecursion(root, &values)
return values
}
II Iteration¶
Complexity:
- Time complexity: \(O(n)\), where \(n\) is the number of nodes in the tree.
- Space complexity: \(O(n)\), where \(n\) is the number of nodes in the tree.
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func preorderTraversalII(root *TreeNode) []int {
values, stack, node := make([]int, 0), make([]*TreeNode, 0), root
for node != nil || len(stack) > 0 {
for node != nil {
values = append(values, node.Val)
if node.Right != nil {
stack = append(stack, node.Right)
}
node = node.Left
}
if len(stack) > 0 {
node = stack[len(stack)-1]
stack = stack[:len(stack)-1]
}
}
return values
}