145. Binary Tree Postorder Traversal¶
Description¶
Given the root
of a binary tree, return the postorder traversal of its nodes' values.
Example 1:
Input: root = [1,null,2,3]
Output: [3,2,1]
Example 2:
Input: root = [1,2,3,4,5,null,8,null,null,6,7,9]
Output: [4,6,7,5,2,9,8,3,1]
Example 3:
Input: root = []
Output: []
Example 4:
Input: root = [1]
Output: [1]
Constraints:
- The number of the nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
.
Solutions¶
I Recursion¶
Complexity:
- Time complexity: \(O(n)\), where \(n\) is the number of nodes in the tree.
- Space complexity: \(O(h)\), where \(h\) is the height of the tree.
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
// Postorder traversal: left -> right -> root
func postorderTraversal(root *TreeNode) []int {
values := make([]int, 0)
postorderTraversalRecursion(root, &values)
return values
}
func postorderTraversalRecursion(root *TreeNode, values *[]int) {
if root == nil {
return
}
postorderTraversalRecursion(root.Left, values)
postorderTraversalRecursion(root.Right, values)
*values = append(*values, root.Val)
}
II Iteration¶
Complexity:
- Time complexity: \(O(n)\), where \(n\) is the number of nodes in the tree.
- Space complexity: \(O(n)\), where \(n\) is the number of nodes in the tree.
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func postorderTraversalII(root *TreeNode) []int {
values, stack, node := make([]int, 0), make([]*TreeNode, 0), root
for node != nil || len(stack) > 0 {
for node != nil {
values = append([]int{node.Val}, values...)
if node.Left != nil {
stack = append(stack, node.Left)
}
node = node.Right
}
if len(stack) > 0 {
node = stack[len(stack)-1]
stack = stack[:len(stack)-1]
}
}
return values
}